Bioimpressão no Transplante de Órgãos: Dos Modelos Experimentais às Perspectivas Clínicas

Autores/as

Palabras clave:

Tissue Engineering, 3D Printing Technologies, Graft Viability, Biomedical Innovation, Implantable Constructs

Resumen

Introdução:  A bioimpressão despontou como uma tecnologia inovadora no transplante de órgãos e na medicina regenerativa, visando solucionar desafios urgentes, como a escassez de órgãos de doadores e a necessidade de reparo eficaz de tecidos. Ao aproveitar as técnicas avançadas de impressão 3D, a bioimpressão permite a fabricação de tecidos e órgãos funcionais com propriedades arquitetônicas e biológicas precisas. Métodos:  Esta revisão fornece uma análise detalhada dos últimos avanços em bioimpressão, concentrando-se em técnicas de ponta, no desenvolvimento de biotintas e em suas aplicações na engenharia de tecidos. Ela examina os avanços significativos na criação de protótipos de órgãos vascularizados e transplantáveis e explora a função da bioimpressão na medicina personalizada. Resultados:  As descobertas destacam o impacto transformador da bioimpressão no campo biomédico, particularmente em testes de medicamentos, modelagem terapêutica e estratégias de tratamento específicas para o paciente. Além disso, os principais desafios — incluindo limitações tecnológicas, preocupações éticas e considerações regulatórias — são discutidos para fornecer uma compreensão abrangente do progresso do campo e dos possíveis obstáculos. Conclusão:  A bioimpressão é imensamente promissora para revolucionar a saúde global, oferecendo soluções para a escassez de órgãos e o avanço da medicina regenerativa. No entanto a pesquisa e a inovação contínuas são necessárias para superar os desafios existentes e facilitar sua tradução clínica para a prática médica convencional.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

1. Persaud A, Maus A, Strait L, Zhu D. 3D Bioprinting with Live Cells. Eng Regen 2022;3(3):292-309. https://doi.org/10.1016/j.engreg.2022.07.002

2. Gu Z, Fu J, Lin H, He Y. Development of 3D bioprinting: From printing methods to biomedical applications. Asian J Pharm Sci 2019;15(5):529-57. https://doi.org/10.1016/j.ajps.2019.11.003

3. Atala A, Bauer SB, Soker S, Yoo JJ, Retik AB. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet 2006;367(9518):1241-6. https://doi.org/10.1016/S0140-6736(06)68438-9

4. Mierke CT. Bioprinting of cells, organoids and organs-on-a-chip together with hydrogels improves structural and mechanical cues. Cells 2024;13(19):1638. https://doi.org/10.3390/cells13191638

5. Jongh D, Massey EK, Cronin AJ, Schermer MHN, Bunnik EM, VANGUARD Consortium. Early-phase clinical trials of bio-artificial organ technology: A systematic review of ethical issues. Transpl Int 2022;35:10751. https://doi.org/10.3389/ti.2022.10751

6. Fang Y, Guo Y, Liu T, Xu R, Mao S, Mo X, et al. Advances in 3D bioprinting. Chin J Mech Eng 2022;1(1):100011. https://doi.org/10.1016/j.cjmeam.2022.100011

7. Budharaju H, Sundaramurthi D, Sethuraman S. Embedded 3D bioprinting – An emerging strategy to fabricate biomimetic & large vascularized tissue constructs. Bioact Mater 2023;32:356-84. https://doi.org/10.1016/j.bioactmat.2023.10.012

8. Chen X, Anvari-Yazdi AF, Duan X, Zimmerling A, Gharraei R, Sharma N, et al. Biomaterials / bioinks and extrusion bioprinting. Bioactive Materials 2023;28:511-36. https://doi.org/10.1016/j.bioactmat.2023.06.006

9. Brahme P, Rarokar N, Kumbhalkar R, Saoji S, Khedekar P. Natural and synthetic polymeric hydrogel: a bioink for 3D bioprinting of tissue models. J Drug Deliv Sci Technol 2024(Part A);106204. https://doi.org/10.1016/j.jddst.2024.106204

10. Do AV, Khorsand B, Geary SM, Salem AK. 3D Printing of Scaffolds for Tissue Regeneration Applications. Adv Healthc Mater 2015;4(12):1742-62. https://doi.org/10.1002/adhm.201500168

11. Selim M, Mousa HM, Abdel-Jaber G, Barhoum A, Abdal-Hay A. Innovative designs of 3D scaffolds for bone tissue regeneration: Understanding principles and addressing challenges. Eur Polym J 2024;215:113251. https://doi.org/10.1016/j.eurpolymj.2024.113251

12. Mirshafiei M, Rashedi H, Yazdian F, Rahdar A, Baino F. Advancements in tissue and organ 3D bioprinting: Current techniques, applications, and future perspectives. Mater Des 2024;240:112853. https://doi.org/10.1016/j.matdes.2024.112853

13. Datta P, Ayan B, Ozbolat IT. Bioprinting for vascular and vascularized tissue biofabrication. Acta Biomater 2017;51:1-20. https://doi.org/10.1016/j.actbio.2017.01.035

14. Wang X, Zhang D, Singh YP, Yeo M, Deng G, Lai J, et al. progress in organ bioprinting for regenerative medicine. Engineering 2024;42:121-42. https://doi.org/10.1016/j.eng.2024.04.023

15. Cui H, Miao S, Esworthy T, Zhou X, Lee SJ, Liu C, et al. 3D bioprinting for cardiovascular regeneration and pharmacology. Adv Drug Deliv Rev 2018;132:252-69. https://doi.org/10.1016/j.addr.2018.07.014

16. Yeo M, Sarkar A, Singh YP, Derman ID, Datta P, Ozbolat IT. Synergistic coupling between 3D bioprinting and vascularization strategies. Biofabrication 2023;16(1):012003. https://doi.org/10.1088/1758-5090/ad0b3f

17. Sexton ZA, Hudson AR, Herrmann JE, Shiwarski DJ, Pham J, Szafron JM, et al. Rapid model-guided design of organ-scale synthetic vasculature for biomanufacturing. ArXiv 2023;arXiv:2308.07586v1. https://doi.org/10.48550/arXiv.2308.07586

18. Tripathi S, Mandal SS, Bauri S, Maiti P. 3D bioprinting and its innovative approach for biomedical applications. MedComm 2022;4(1):e194. https://doi.org/10.1002/mco2.194

19. Chiticaru EA, Ioniță M. Commercially available bioinks and state-of-the-art lab-made formulations for bone tissue engineering: a comprehensive review. Mater Today Bio 2024;29:101341. https://doi.org/10.1016/j.mtbio.2024.101341

20. Zhou J, Li Q, Tian Z, Yao Q, Zhang M. Recent advances in 3D bioprinted cartilage-mimicking constructs for applications in tissue engineering. Mater Today Bio 2023;23:100870. https://doi.org/10.1016/j.mtbio.2023.100870

21. Varkey M, Visscher DO, van Zuijlen PPM, Atala A, Yoo JJ. Skin bioprinting: the future of burn wound reconstruction? Burns Trauma 2019;7:4. https://doi.org/10.1186/s41038-019-0142-7

22. Kolimi P, Narala S, Nyavanandi D, Youssef AAA, Dudhipala N. Innovative treatment strategies to accelerate wound healing: trajectory and recent advancements. Cells 2022;11(15):2439. https://doi.org/10.3390/cells11152439

23. Huang G, Zhao Y, Chen D, Wei L, Hu Z, Li J, et al. Applications, advancements, and challenges of 3D bioprinting in organ transplantation. Biomater Sci 2024;12(6):1425-44. https://doi.org/10.1039/d3bm01934a

24. Mathur V, Agarwal P, Kasturi M, Srinivasan V, Seetharam RN, Vasanthan KS. Innovative bioinks for 3D bioprinting: Exploring technological potential and regulatory challenges. J Tissue Eng 2025;16:1-31. https://doi.org/10.1177/20417314241308022

25. Mota C, Camarero-Espinosa S, Baker MB, Wieringa P, Moroni L. Bioprinting: from tissue and organ development to in vitro models. Chem Rev 2020;120(19):10547-607. https://doi.org/10.1021/acs.chemrev.9b00789

26. Wang Z, Wang L, Li T, Liu S, Guo B, Huang W, Wu Y. 3D bioprinting in cardiac tissue engineering. Theranostics 2021;11(16):7948-69. https://doi.org/10.7150/thno.61621

27. Yaneva A, Shopova D, Bakova D, Mihaylova A, Kasnakova P, Hristozova M, et al. The progress in bioprinting and its potential impact on health-related quality of life. Bioengineering 2023;10(8):910. https://doi.org/10.3390/bioengineering10080910

28. Shopova D, Yaneva A, Bakova D, Mihaylova A, Kasnakova P, Hristozova M, et al. (Bio)printing in personalized medicineopportunities and potential benefits. Bioengineering 2023;10(3):287. https://doi.org/10.3390/bioengineering10030287

29. Lam EHY, Yu F, Zhu S, Wang Z. 3D bioprinting for next-generation personalized medicine. Int J Mol Sci 2023;24(7):6357. https://doi.org/10.3390/ijms24076357

30. Parihar A, Parihar DS, Gaur K, Arya N, Choubey VK, Khan R. 3D bioprinting for drug development and screening: recent trends towards personalized medicine. Hybrid Adv 2024;100320. https://doi.org/10.1016/j.hybadv.2024.100320

31. Yang K, Wang L, Vijayavenkataraman S, Yuan Y, Tan E, Kang L. Recent applications of three dimensional bioprinting in drug discovery and development. Adv Drug Deliv Rev 2024;115456. https://doi.org/10.1016/j.addr.2024.115456

32. Ricci G, Gibelli F, Sirignano A. Three-dimensional bioprinting of human organs and tissues: bioethical and medicolegal implications examined through a scoping review. Bioengineering 2023;10(9):1052. https://doi.org/10.3390/bioengineering10091052

33. Kantaros A, Ganetsos T, Petrescu FIT, Alysandratou E. Bioprinting and intellectual property: challenges, opportunities, and the road ahead. Bioengineering 2025;12(1):76. https://doi.org/10.3390/bioengineering12010076

34. Vijayavenkataraman S. 3D bioprinting: challenges in commercialization and clinical translation. J 3D Print Med 2023;7(2):3DP8. https://doi.org/10.2217/3dp-2022-0026

35. Xu HQ, Liu JC, Zhang ZY, Xu CX. A review on cell damage, viability, and functionality during 3D bioprinting. Mil Med Res 2022;9(1):70. https://doi.org/10.1186/s40779-022-00429-5

36. Derman ID, Moses JC, Rivera T, Ozbolat IT. Understanding the cellular dynamics, engineering perspectives and translation prospects in bioprinting epithelial tissues. Bioact Mater 2024;43:195-224. https://doi.org/10.1016/j.bioactmat.2024.09.025

37. Hasan MM, Ahmad A, Akter MZ, Choi YJ, Yi HG. Bioinks for bioprinting using plant-derived biomaterials. Biofabrication 2024;16(4):042004. https://doi.org/10.1088/1758-5090/ad6932

38. Mladenovska T, Choong PF, Wallace GG, O’Connell CD. The regulatory challenge of 3D bioprinting. Regen Med 2023;18(8):659-74. https://doi.org/10.2217/rme-2022-0194

39. Tong A, Pham QL, Abatemarco P, Mathew A, Gupta D, Iyer S, et al. Review of low-cost 3D bioprinters: state of the market and observed future trends. SLAS Technol 2021;26(4):333-66. https://doi.org/10.1177/24726303211020297

40. Kirillova A, Bushev S, Abubakirov A, Sukikh G. Bioethical and legal issues in 3D bioprinting. Int J Bioprint 2020;6(3):272. https://doi.org/10.18063/ijb.v6i3.272

41. Gilbert F, O’Connell CD, Mladenovska T, Dodds S. Print me an organ? Ethical and regulatory issues emerging from 3D bioprinting in medicine. Sci Eng Ethics 2017;24(1):73–91. https://doi.org/10.1007/s11948-017-9874-6

42. Devarapalli P, Ajay D. The impact of 3D bioprinting innovation on IP ecosystem and patent law: an Indian and US perspective. In: Singh K, Chongtham N, Trikha R, Bhardwaj M, Kaur S, editors. Science, technology and innovation ecosystem: an Indian and global perspective. 2024. p. 197-210. https://doi.org/10.1007/978-981-97-2815-2_9

43. Vijayavenkataraman S, Lu W, Fuh J. 3D bioprinting – an ethical, legal and social aspects (ELSA) framework. Bioprinting 2016;1-2:11–21. https://doi.org/10.1016/j.bprint.2016.08.001

44. Zhang Z, Zhou X, Fang Y, Xiong Z, Zhang T. AI-driven 3D bioprinting for regenerative medicine: from bench to bedside. Bioact Mater 2024;45:201-30. https://doi.org/10.1016/j.bioactmat.2024.11.021

45. Barjuei ES, Shin J, Kim K, Lee J. Precision improvement of robotic bioprinting via vision-based tool path compensation. Sci Rep 2024;14:17764. https://doi.org/10.1038/s41598-024-68597-z

46. Aljohani W, Ullah MW, Zhang X, Yang G. Bioprinting and its applications in tissue engineering and regenerative medicine. Int J Biol Macromol 2017;107:261-75. https://doi.org/10.1016/j.ijbiomac.2017.08.171

47. Jain P, Kathuria H, Dubey N. Advances in 3D bioprinting of tissues/organs for regenerative medicine and in-vitro models. Biomaterials 2022;287:121639. https://doi.org/10.1016/j.biomaterials.2022.121639

48. Jovic TH, Combellack EJ, Jessop ZM, Whitaker IS. 3D bioprinting and the future of surgery. Front Surg 2020;7:609836. https://doi.org/10.3389/fsurg.2020.609836

Publicado

2025-04-25

Cómo citar

1.
Eskandar K. Bioimpressão no Transplante de Órgãos: Dos Modelos Experimentais às Perspectivas Clínicas. bjt [Internet]. 25 de abril de 2025 [citado 26 de abril de 2025];28. Disponible en: https://bjt.emnuvens.com.br/revista/article/view/668

Número

Sección

Artículo de Revisión