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Abstract: Kidney transplant patients have a high case fatality rate 
following severe acute respiratory syndrome 2 (SARS-CoV-2) infection. 
In addition, the vaccine immune response is lower and less durable, which 
makes them more susceptible to severe forms, even when vaccinated. 
Evidence suggests that in addition to advanced age and the high prevalence 
of comorbidities often associated with worse prognosis, such as diabetes, 
obesity, and cardiovascular disease, prolonged immunosuppression exerts an 
independent effect on outcomes. In fact, the cellular and humoral adaptive 
immune response, which is inhibited by immunosuppression, is a key step 
in resolving SARS-CoV-2 infection. On the other hand, lymphocyte 
inhibition could modulate the aberrant production of proinflammatory 
cytokines that result in severe lung impairment, mitigating the severity of 
the condition. In addition, some immunosuppressive drugs have antiviral 
properties, potentially applicable to coronavirus. This narrative review aimed 
to discuss the available evidence on the impact of immunosuppressive drugs 
on COVID-19 outcomes in kidney transplant recipients.
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INTRODUCTION
Evidence accumulated since the beginning of the COVID-19 pandemic has shown that 
kidney transplant patients infected by severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2) have high mortality. When considering the first two years of the 
pandemic, 2020 and 2021, the lethality rate among transplanted individuals in 
the various world registries was around 20 to 25%, which was six to eight times the 
lethality reported for the nontransplanted population (3 to 5%). More recently, with 
almost 80% of the Brazilian population with a complete vaccination schedule (two or 
three doses) and predominance of the Omicron variant, the lethality among transplant 
recipients in Brazil is about 9 to 10%, which is 20 times the rate reported for the non-
transplanted population (0.3 to 0.6%).1-3

It is well known that kidney transplant patients are afflicted with multiple 
comorbidities, which have been known to negatively impact the outcomes 
of COVID-19, such as renal dysfunction, hypertension, diabetes mellitus, 
cardiovascular disease and obesity, in addition to advanced age;4 however, evidence 
suggests that some factor outside of age and comorbidities has negatively influenced 
the outcomes of these patients. As an example, kidney transplant patients followed 
at the Kidney Hospital in São Paulo city (Brazil) diagnosed with COVID-19 were 
compared with infected individuals among the inhabitants of the state of São Paulo 
stratified by age groups. In all groups, the lethality rate of transplant recipients was 
significantly higher, even in the 20 to 29 age group, in which a lower prevalence of 
comorbidities is expected.5
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In another Brazilian study, kidney transplant recipients were compared with individuals with chronic dialysis kidney disease 
matched for age, sex, ethnicity, body mass index, presence of comorbidities, and geographic location of the center. As a result, 
transplant recipients had a 6% higher risk of death within 30 days with each day of follow-up after diagnosis.6

In addition to the worse clinical outcome after infection with the new coronavirus, transplant patients have prolonged viral 
clearance and lower vaccine response, notably lower rates of seroconversion and faster decline in neutralizing antibody titers when 
compared to the general population. 5,7-10 As a result, recent evidence shows that transplant patients who have received one or 
two doses of SARS-CoV-2 vaccine have similar clinical outcomes to unvaccinated patients, reinforcing the need for supplemental 
doses in this group of individuals.11

Evidence leads to the hypothesis that there is a likely independent effect of immunosuppressive drugs in influencing the 
outcomes of SARS-CoV-2 infection, either by downregulating and prolonging viral replication, modulating cytokine production 
and inflammation arising from the cellular adaptive immune response, reducing the humoral immune response, or by some 
other effect yet to be explored. 12 It should be noted that other factors not directly related to the modulating effect of viral load and 
immune response may impact the outcomes of COVID-19. As an example, some drug classes are associated with higher incidence 
of lymphopenia and coinfections, which are implicated in worse prognosis of COVID-19.13,14 

Despite the higher overall lethality rate, it should be noted that when immunosuppressed patients who required hospitalization 
were compared with equally severely immunocompetent patients, there appeared to be no differences in mortality, which 
makes understanding the role of immunosuppression in outcomes even more intriguing, reinforcing the idea that the effect of 
immunosuppression is determinant in the early stages of the disease.15-19 

In this narrative review, the available evidence about the potential impact of immunosuppressive drugs commonly used in 
kidney transplantation on the outcomes of SARS-CoV-2 infection is explored, with a focus on understanding the modulating role 
of immunosuppression on COVID-19 outcomes.

IMMUNE RESPONSE TO SARS-COV-2 INFECTION
For us to explore the impact of immunosuppressive drugs on COVID-19, a brief review of the immune response to SARS-CoV-2 
infection is essential. 

To exert its pathogenic effect, SARS-CoV-2 is internalized in target cells through the interaction between the viral S-protein and 
the cells’ angiotensin-converting enzyme 2 (ACE2) receptors. Within the endosomes of infected cells, RNA is replicated and new 
virions are produced and released from the cell by exocytosis to then infect new cells. After the initial phase of viral replication, 
the innate immune system is triggered as the first line of defense, with release of proinflammatory cytokines, such as tumor 
necrosis factor alpha (TNF-α), interferon-gamma (IFN-γ) and interleukins 1, 6, and 18 (IL-1, IL-6, IL-18). Next, the adaptive 
immune response is initiated, with two main responses: 

•	 production of cytotoxic T lymphocytes and production of cytokines, such as IL-2, IFN-γ, and TNF-α; 
•	 Differentiation of B lymphocytes into plasma cells and production of neutralizing antibodies.20 

The occurrence of severe forms of COVID-19 is related to deregulation of the innate and adaptive immune response, with 
reduced type I IFN activity and, consequently, inadequate control of viral replication; aberrant cytokine production, generating 
hyperinflammation (cytokine storm); lymphopenia and cell exhaustion, compromising the response of NK cells and T and B 
lymphocytes; dysregulation of the myeloid response, with excessive and aberrant production of dendritic cells, monocytes, and 
neutrophils; and heterogeneity of the adaptive immune response to natural infection and vaccines.21

It is noteworthy that the adaptive immune response is the main target of immunosuppressive drugs, which have the primary 
goal of preventing rejection by curbing lymphocyte activation and antibody production.

RABBIT ANTITHYMOCYTE GLOBULIN (THYMOGLOBULIN)
Rabbit antithymocyte globulin (ATG, thymoglobulin) is a polyclonal antibody that exerts its immunosuppressive effect predominantly 
by depleting T lymphocytes through cell lysis, apoptosis, and opsonization. In addition, thymoglobulin induces apoptosis of B 
and NK cells.22 

Since lymphopenia was consistently associated with worse prognosis in patients with COVID-19, restricting the use of this 
drug as induction therapy during the pandemic was widely discussed in transplant centers around the world.13 On the other 
hand, induction therapy with ATG is potentially associated with lower incidence of late graft function and ensures an initial 
immunosuppressive regimen of greater efficacy in preventing acute rejection, with less need for subsequent high-dose steroid 
and/or ATG treatments and shorter hospital stay.23,24 
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The scarce evidence available suggests that the use of ATG in rejection induction or treatment protocols during pandemic 
COVID-19 is safe, and should not be avoided or delayed in patients without infection.25,26 There is no description of the use of 
ATG in patients with symptomatic active SARS-CoV-2 infection; however, two Brazilian studies have reported the use of ATG 
as induction therapy in asymptomatic individuals undergoing transplantation with positive SARS-CoV-2 reverse transcriptase 
followed by polymerase chain reaction (RT-PCR). In both cohorts, the clinical outcomes were favorable.27,28

CORTICOSTEROIDS
One of the main immunosuppressive mechanisms of corticosteroids, often used in maintenance immunosuppressive regimens, 
is inhibition of the activity of cytoplasmic factor kappa B (NF-κB), which is responsible for activating the DNA synthesis of 
several cytokines, such as IL-2, which induces T-lymphocyte proliferation.29 At high doses, corticosteroids can act by mechanisms 
independent of intracellular receptor binding, affecting the physicochemical properties of the cell membranes of inflammatory 
cells. Corticosteroids also have a potent anti-inflammatory action, modulating T-cells, monocytes, and macrophages, reducing the 
production of pro-inflammatory mediators produced by these cells and stimulating the release of anti-inflammatory mediators, 
as well as suppressing coagulation factors.30 

Previous studies with SARS-CoV and Middle East respiratory syndrome (MERS-CoV) have pointed to higher mortality in patients 
treated on steroids, with increased risk of secondary infection and prolonged viral clearance. Regarding SARS-CoV-2, the literature is 
controversial, and the effect of the steroid appears to be associated with disease stage and severity.31 While evidence suggests the benefit 
of using corticosteroids in patients with severe forms of COVID-19, notably those on mechanical ventilation,32 other studies demonstrate 
prolongation of viral load and worse prognosis when the drug is used in the early stages and in patients with nonsevere forms of the disease.33

It should be noted that the data cited refer to the use of steroids in high doses and for a short period of time, similar to 
the schemes adopted in the treatment of rejection episodes. Evidence regarding the chronic use of steroids at the low doses 
traditionally employed in maintenance regimens, such as 5 mg of prednisone per day, is sparse. An analysis of the Brazilian 
multicenter COVID-19 registry in kidney transplant recipients suggested a protective effect of steroid use as part of the 
maintenance immunosuppressive regimen, with a lower risk of death at 28 days however, this was a lower-weight predictor, i.e., 
the magnitude of its protective effect was much lower than that of other predictors. In addition, only 6% of the cohort was on 
steroid-free regimens, making this variable to be analyzed with caution.34

CALCINEURIN INHIBITORS: CYCLOSPORINE AND TACROLIMUS
Cyclosporine and tacrolimus exert their immunosuppressive effect by inhibiting the phosphatase activity of the cytoplasmic protein 
calcineurin (CNI), preventing the gene transcription of inflammatory interleukins, especially IL-2, and preventing the consequent 
activation of T lymphocytes. For this effect to occur, cyclosporine and tacrolimus bind to the cytoplasmic proteins cyclophilin and 
FKBP, respectively, forming complexes that inhibit calcineurin activity.35

Similar to what is described for human immunodeficiency virus (HIV), in vitro studies indicate binding of SARS-CoV to the 
immunophilins cyclophilin and FKBP during the process of internalization into the target cell. Thus, CNIs would be potential 
competitors for binding to these proteins, and this effect would result in reduced viral replication.36,37 Additionally, it has also been 
shown, both in vitro and in vivo, that cyclosporine induces a potent antiviral immune response by inducing IFN-lambda-dependent 
release of IFN regulatory factor 1 (IFN type III), resulting in gene-dependent IFN-stimulated antiviral reprogramming of the lung 
epithelium, with preservation of barrier function after MERS-CoV infection.38 The antiviral effect was also demonstrated for 
SARS-CoV-2 in in vitro/ex-vivo and in vivo experiments.39

Furthermore, as potent inhibitors of lymphocyte activation and consequent interleukin production, CNIs could act by 
inhibiting the inflammatory response arising from adaptive immunity, attenuating the cytokine storm that results in hypoxemia 
and morbidity and mortality in COVID-19. Considering this reasoning, a Spanish study retrospectively evaluated the outcomes 
of oral or intravenous cyclosporine treatment for nontransplant patients who required hospitalization after COVID-19 infection. 
As a result, patients treated with cyclosporine had significantly lower mortality.40 Preliminary evidence in transplanted individuals 
also revealed that those on CNI had better outcomes.41,42

The potential beneficial effect of CNIs on viral replication and modulation of the inflammatory response is countered by a 
potential negative effect on the humoral adaptive immune response, demonstrated by lower neutralizing antibody production after 
vaccination with the immunizers BNT162b2 (Pfizer-Biontech), mRNA-1273 (Moderna) and ChAdOx1-nCoV-19 (AstraZeneca). 
In these studies, the likelihood of seroconversion after vaccination was lower in patients taking tacrolimus versus cyclosporine, 
notably in those taking daily doses greater than 3 mg.43,44
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AZATHIOPRINE
Azathioprine, after conversion in the liver to 6-mercaptopurine, acts as an analog of purine bases, and is incorporated as a false 
base into cellular DNA. Thus, it blocks the de novo and salvage pathways of purine synthesis, inhibits DNA and RNA synthesis, 
and consequently blocks cell activation and proliferation.45 

Previous in vitro studies demonstrated that the thiopurine analogues 6-mercaptopurine and 6-thioguanine exhibit an inhibitory 
effect on the replication of SARS-CoV by selective and reversible competition for a viral papain-like protease.46,47 More recently, 
this effect has also been demonstrated for SARS-CoV-2.48 

However, clinical evidence in patients with rheumatologic diseases points to a worse prognosis and higher mortality in 
patients with COVID-19 on chronic azathioprine use when compared to those on tumor necrosis factor inhibitors (anti-TNF).49 
In addition, azathioprine has a myelotoxic effect, and lymphopenia is a variable consistently associated with worse prognosis in 
patients with COVID-19.13

There is no robust evidence on the impact of azathioprine use on cellular, humoral and clinical vaccine response. It is emphasized 
that this class of drugs has limited effect on B lymphocyte activation and, therefore, on antibody production.50 Previous studies 
with vaccines against influenza and hepatitis A virus have not been consistent in demonstrating impaired immune response in 
patients taking azathioprine.51,52

MYCOPHENOLATE SODIUM AND MOFETIL
Mycophenolic acid, the active form of mycophenolate sodium and mofetil, is a selective, noncompetitive, reversible inhibitor of 
inosine monophosphate dehydrogenase (IMPDH), a limiting enzyme in the de novo synthesis of nucleotides, which prevents the 
division of different cell lines, mainly activated lymphocytes.53 

Previous in vitro studies suggested a potential effect of mycophenolic acid in inhibiting the replication of MERS-CoV by 
noncompetitive inhibition by the viral papain-like protease.54-56 More recently, similar antiviral effect has been demonstrated in 
vitro for SARS-CoV-2,57 but in vivo experiments and clinical studies testing mycophenolate in experimental models and individuals 
with MERS-CoV infection have not confirmed this effect.58 Regarding the potential impact of mycophenolate on SARS-CoV-2 
infection, an analysis of the Brazilian multicenter COVID-19 registry in kidney transplant recipients demonstrated that patients 
taking mycophenolate as part of the maintenance immunosuppressive regimen had a higher lethality rate when compared to 
patients taking azathioprine and inhibitors of the mammalian target of rapamycin (mTOR).59 In addition, mycophenolate, such as 
azathioprine, is a drug implicated in the development of lymphopenia.

Unlike azathioprine, mycophenolic acid has a direct inhibitory effect on B lymphocytes, attenuating antibody production. 
In fact, as demonstrated with other vaccines,52 mycophenolate-containing immunosuppressive regimens have been consistently 
associated with lower neutralizing antibody formation after vaccination against COVID-19. This effect is greater the longer the 
exposure to the drug.43 

MTOR INHIBITORS: SIROLIMUS AND EVEROLIMUS
The mTOR inhibitors (imTOR), sirolimus and everolimus, act by inhibiting the activity of the protein kinase mTOR, blocking the response 
to cytokine stimulation and inhibiting the progression from G1 to S phase of the cell cycle of various cells, including lymphocytes.60

The imTOR have known antiviral effects, vastly demonstrated for cytomegalovirus (CMV), the polyomavirus (BK virus) and 
human papillomavirus (HPV). Several mechanisms are implicated in this antiviral effect, such as: modulation of the innate 
immune response; inhibition of cell proliferation, a necessary reservoir for replication of obligate intracellular viruses; attenuation 
of immunosenescence; enhancement of memory CD8 T-cell function and response; and enhancement of CD4 T-cell response 
and, consequently, antigen-specific antibody production.61 

As for viruses of the Coronaviridae family, in vitro studies revealed that SARS-CoV-2 utilizes the Akt/mTOR/HIF-1 pathway 
for its replication.62 In addition to the specific action on viral replication and immune response, other potential beneficial 
effects of imTOR on COVID-19 would be to reduce cytotoxic T-cell proliferation and consequent cytokine production, 
ameliorating the cytokine storm, similar to what has been described for CNIs. In addition, the imTOR have the potential 
effect of preserving the growth and activities of regulatory T cells (Treg), which could act to reduce the aberrant immune 
response typical of severe forms of the disease.63 There is also speculation about a potential antifibrotic effect reducing 
pulmonary interstitial fibrosis. This antifibrotic effect, arising from reduced expression of plasminogen activator inhibitor 1 
(PAI-1), has been widely explored in the past for patients with renal graft dysfunction and interstitial fibrosis and tubular 
atrophy, formerly called chronic graft nephropathy.64,65
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As opposed to the potential beneficial effects cited, the imTOR, as well as azathioprine and mycophenolate, are associated with 
lymphopenia. In addition, this class of drugs has known pulmonary toxicity, manifested by interstitial pneumonitis, lymphocytic 
alveolitis, bronchiolitis obliterans with organizing pneumonia, pulmonary fibrosis, or alveolar hemorrhage.66 

In the clinical context, recent evidence from the Brazilian multicenter study of COVID-19 in kidney transplant recipients 
demonstrated that in patients using CNI-based regimens, the concomitant use of imTOR was independently associated with a 
lower risk of 90-day death compared to azathioprine and mycophenolate.59 

Similar to mycophenolate, the imTOR act by blocking the development of memory B cells. Therefore, it would be expected 
that patients taking these drugs would show lower neutralizing antibody production after vaccination against SARS-CoV-2. 
Paradoxically, evidence suggests that the imTOR are associated with improved humoral and cellular immune response following 
vaccines using messenger RNA platform. It is speculated that this effect is related to the immunomodulatory effect on memory 
CD8 T cells and CD4 T cells.67,68

DRUG INTERACTIONS
Among the drugs currently used in the management of COVID-19, ritonavir deserves mention because of its potential for 
pharmacological interaction with immunosuppressants. Ritonavir, used in combination with other antivirals, such as nirmatrelvir, 
has potent inhibitory effect on the CYP4A and glycoprotein-P (gp-P) enzymes, significantly increasing the concentration of CNIs 
and imTOR.69 In addition, steroids, when in high doses, induce CYP3A and gp-P activity, reducing tacrolimus concentration.70 
Despite the potential for pharmacologic interaction with immunosuppressants, drugs with no proven efficacy in the management 
of COVID-19 were not addressed here. 

MANAGEMENT OF IMMUNOSUPPRESSION 
Considering the body of evidence available to date and that immunosuppressive drugs are critical to the prevention of acute and 
chronic rejection, it follows:34,71-77

•	 There is no evidence to support changes in the immunosuppressive induction and/or maintenance protocol of transplant 
centers in order to reduce the risk of SARS-CoV-2 infection;

•	 No preemptive changes should be made to the maintenance immunosuppressive regimen of stable renal transplant patients 
in order to decrease the risk of SARS-CoV-2 infection;

•	 No change in immunosuppressive regimen should be made for patients who have had contact with people who developed 
COVID-19, as well as for those who tested positive for SARS-CoV-2 and are asymptomatic, oligosymptomatic or with mild 
forms, on outpatient treatment;

•	 Patients with SARS-CoV-2 infection can be monitored remotely, using the warning signs for escalated therapeutic 
interventions;

•	 Patients with mild to moderate forms without requiring hospitalization but with intense lymphopenia should be evaluated 
for reduction or temporary discontinuation of antiproliferative drugs, which are myelotoxic;

•	 For patients with moderate forms requiring hospitalization, regardless of lymphocyte count, reduction or temporary 
discontinuation of the antiproliferative drug should be considered, especially in those on mycophenolate;

•	 Complete discontinuation of immunosuppression may be considered in patients with severe forms, invasive mechanical 
ventilation, and/or organ dysfunction. Despite being a common practice and recommendation, it is important to point out 
that there is no evidence about the real benefit of this strategy, and it is possible that the reduction of immunosuppression in 
this phase is a late intervention;

•	 Kidney transplant recipients who develop SARS-CoV-2 infection are at increased risk of acute renal dysfunction, requiring 
frequent serial monitoring and possibly graft biopsy for diagnostic confirmation; 

•	 It is recommended to return to immunosuppressive drugs as soon as possible after the patient’s clinical recovery, in view of 
the increased risk of acute rejection;

•	 There is no evidence to support increasing the dose/exposure to tacrolimus or cyclosporine in order to reduce viral replication 
or modulate the inflammatory response;

•	 There is no evidence to support conversion from tacrolimus to cyclosporine or from mycophenolate to imTOR preemptively 
or for the therapeutic purpose against COVID-19;

•	 Although suggested by some authors, there is not enough robust evidence on the risk versus benefit of temporarily stopping 
mycophenolate before vaccination with the aim of improving vaccine immune response;



6 Braz J Tranpl ■ v25 n4 ■ e0122 ■ 2022

Impact of Immunosuppression on the Severity ofSARS-CoV-2 Infection in Renal Transplant Recipients

•	 There is no evidence on the management of patients with COVID-19 or concomitant acute rejection;
•	 Attention should be paid to therapeutic monitoring of immunosuppressants during treatment of COVID-19 with drugs that 

have the potential for pharmacological interaction.

FINAL CONSIDERATIONS
Kidney transplant patients have a higher risk of mortality, prolonged viral clearance, and a shorter and less durable vaccine immune 
response. It is not yet completely clear how immunosuppressive drugs modulate these outcomes, and it is likely that this effect is 
a determinant in the early stages of the disease, contributing to viral replication or aberrant immune response. Nevertheless, the 
management of the maintenance immunosuppressive regimen in patients with COVID-19 should be judicious and individualized, 
taking into consideration the patient’s immune risk, clinical picture, and predictors of poor prognosis. 
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